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SUMMARY

The inviscid flow of a perfect gas over blunt-nosed axisymmetric
and two-dimensional bodies at zero angle of attack has been calculated
numerically on an IBM 7090 computer. The computation consisted of the
Fuller blunt-body solution for the subsonic and transonic regions and
the method of characteristics for the supersonic reglon. The flow fields
about a number of blunt bodies were studied, and the calculated results
showed good agreement with experimental shock-wave shapes, surface-pressure
distributions, and flow-field surveys.

INTRODUCTION

Knowledge of the inviscid flow about blunt -nosed bodies traveling
at supersonic velocities is necessary for predicting their aerodynamic
and heat-transfer characteristics. Several numerical methods for calcu-
lating these flow fields have been developed and are to be found in the
literature; see, for example, references 1 through 5. These methods are
generally similar in that each uses a special technique for calculating
the flow in the subsonic region and for providing initial data to begin
a method of characteristics solution for the remainder of the flow field.
One such method solves the subsonic flow problem by starting with a given
shock-wave shape and "marching forward" toward the body. The purpose of
the present report is to compare the results of this particular method
for & perfect gas with a number of experimental results and to show that
computations of this type are valid over a wide range of free-stream
conditions and body shapes.



SYMBOLS

shock-wave shape parameter (see eqg. (l))
shock bluntness (see eq. (1))

body diameter

body length

Mach number

pressure

impact pressure

cylindrical coordinates with origin at stagnation point on body

V. d
Reynolds number, ﬁ?—
o«

radius of curvature of the shock wave at the plane or axis of
symmetry

temperature

velocity

Cartesian coordinates with origin at stagnation point on body
ratio of specific heats

shock standoff distance

stream angle

Mach angle

kinematic viscosity

density

angle subtended by circular arc measured from stagnation point



Subscripts

st stagnation point

o0 free stream

DESCRIPTION OF CALCULATION METHOD

Solution in the Nose Region

The Fuller blunt-body solution (ref. 6) is used to obtain the flow
field in the subsonic and transonic regions. This solution is a modifi-
cation of Van Dyke's earlier work reported in references 7 and 8. 'The
modifications include the addition of a smoothing procedure in the cal-
culations, the use of two parameters to describe the shock-wave shape,
and a nonorthogonal sheared coordinate system as shown in the sketch.
Use of these modifications results
in solutions of the flow field for
a broader range of body shapes. Assumed shock - wove shope
Although results for only two- toee ea )
dimensional bodies are discussed in /'7Ti7'7h*“" A
reference 6, the method has been pro- / /7 / /ﬁ;
grammed for an IBM TO4 or 7090 com- N /
puter for axisymmetric bodies as well.
The solution is at present restricted /
to a perfect gas with a constant ratio / /
of specific heats. /

The solutions found by both R
Van Dyke and Fuller are commenced with

the assumption of a shock shape and [ / |
free-stream values of Mach number 7
and 7. In Fuller's case the shock

shape is given by the following equa-
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where Bg 1s a measure of shock-wave F 44_é%A44, -

bluntness (Bs =1, A = 0 corresponds
to a sphere) and A 1is a measure of
the variance from a conic section.




The equations of motion are integrated numerically, beginning at the shock
wave and proceeding toward the body until sufficient flow field and body
points have been calculated. If the calculated and actual body shapes are
not reasonably close, this procedure is repeated with another shock shape.
For a hemispherical nose, a solution can be obtained in two or three
attempts if the shock-wave shape is assumed to be a conic section (A = 0).
The summary of solutions in reference 8 is helpful in this regard. The
parameter, A, can be used to refine these solutions or to obtain other
body shapes.

Input Conditions to Start the Method of Characteristics

Because of the instabilities in the solution for the nose region,
it is abandoned in favor of the method of characteristics when the flow
becomes supersonic. The input conditions for the method of characteris-
tics must, of course, lie entirely in the supersonic region. In fact,
they must lie downstream of the limiting characteristic line, the line
along which a disturbance cannot affect the subsonic portion of the flow
field. In this report, the input conditions were selected so that the
lowest local Mach number was greater than 1.03, and the locus of starting
points formed a line approximately normal to the streamlines. This pro-
cedure caused no difficulty, except in the vicinity of the body, 1 and the
difficulty there was overcome, for practical purposes, by extrapolation
of the flow properties away from the body into the body itself. Addi-
tional points in the field were obtained by interpolation between roints
calculated in the blunt-body solution. Unfortunately such a procedure
requires some individual attention for each case, and a general program
connecting the subsonic and supersonic regions has not yet been produced.
However, replacing the "marching forward" technique, described previously,
by the characteristic approach, changed the method from one inherently
unstable to one inherently stable. Therefore, the errors brought about
by the required extrapolations and interpolations can be expected to damp
out. The fact that these errors were small and, at least, did not grow
is verified by subsequent calculations and comparisons with experiment.

Method of Characteristics Solution in the Supersonic Region

The method of characteristics consists of numerically integrating
the equations of motion for inviscid supersonic flow by use of finite
difference equations along Mach lines, where the equations reduce to
ordinary differential equations. The equations programmed (on an IBM 7090
computer) for use in this investigation are those given by Hayes and
Probstein in reference 9. The equations for the two families of Mach
lines are

The apparent divergence of some solutions in the transonic region
near the body is still, at the writing of this report, being investigated.




dp + a0 + € sin 6 sin W dx _ 0 (2)

pVZtan V) r cos(u * 0)

where € = 1 for axisymmetric flow and € = 0 for two-dimensional flow.

The flow is rotational behind the curved bow wave and the entropy
varies from one streamline to another. The variation in entropy was cal-
culated by linear interpolation between the streamlines. It is noted
that this method can lead to difficulties if steep entropy gradients are
encountered and the characteristic mesh is large. Under these conditions,
continuity of mass between the free stream and the shock layer at any
axial station may not be satisfied. In this investigation imbedded shock
waves are not allowed in the flow field. The fluid may be either a per-
fect or a real gas in thermodynamic equilibrium. However, as noted
earlier, Fuller's blunt-body solution is programmed for a perfect gas
with a constant ratio of specific heats; therefore, the present
calculations are limited to this case.

RESULTS AND DISCUSSION

The present method has been used to calculate the flow field around
a number of blunt-nosed bodies for various values of free-stream Mach
number and  y. The first example, flow of air for M, = L.76 over a
hemisphere, is treated in some detail to illustrate the intermediate
steps of the calculation method. The remaining examples include only
the Tinal results of shock-wave shape, surface-pressure distribution,
and flow-field surveys that are compared with experimental data.

FExample 1: Hemisphere, Air, 7 = 1.4, M, = L.76

The first example considered is the flow field around a hemisphere.
This example is mainly a test of the Fuller blunt-body solution, which was
obtained with the assumption of a shock-wave shape with By = 0.500 and
A = -0.045. The assumed shock-wave shape and the calculated body points
and sonic line are shown in figure 1. The body points compare favorably
with a circle defined by A/d = 0.0797 and d4/Rg = 1.388. The calculated
sonic line is compared with the measurements of Kendall (ref. 10), who
determined the sonic line location by measuring the termination of a shock
wave generated by a small probe. Note that the measured points on the
sonic line always lie within the theoretically subsonic region. This
result mzy be pecullar to the measuring technique used by Kendall.

Tn order to continue the calculations in the supersonic region over
the rest of the hemisphere, conditions were chosen on an appropriate line
between the body and the shock wave. The 7 points indicated in filgure 1
were used in the interpolation program to obtain 25 starting points for



the method of characteristics.® At the starting or matching point on the
body, x/d = 0.1318 an@ M = 1.0k, the body ordinate and slope differed
from those for a hemisphere by 0.06 and 0.9 percent, respectively. The
portion of the hemisphere after the matching point was represented by a
fifth-degree polynomial with the ordinate, slope, and curvature at the
end points used as boundary conditions.

The flow field over the supersonic portion of the hemisphere was
then calculated by the method of characteristics. The calculated Mach
number distribution on the hemisphere is shown in figure 2 and is com-
pared with Kendall's data. 1In the region of the matching point between
the blunt-body solution and the method of characteristics, ¢ = MQ.BO,
the slope of the computed Mach number distribution is discontinuous.

This discrepancy indicates that the Fuller blunt-body solution may be
slightly in error in this region. Near the 90O point on the hemisphere,
the experimental Mach numbers are lower than the calculated values. This
may be due to viscous effects although Kendall points out that a three-
to-fourfold change in Reynolds number had negligible effects on his meas-
urements. In general, the present method appears to predict satisfactorily
the flow field about a hemisphere.

Example 2: Hemisphere-Cylinder, Air, 7 = 1.4, M, = 7.7

The second example studied is a hemisphere with a cylindrical
afterbody. This configuration has been the subject of numerous investi-
gations including that of Kubota reported in reference 1l1. The shock-
wave shape predicted by the present method is shown in figure 3 and is
compared with Kubota's measurements. It is noted that the shock-wave
shape is determined solely by the hemisphere since a characteristic line
originating behind the hemisphere-cylinder juncture never intersects the
shock wave. The calculated surface-pressure distribution is shown in
figure 4 and is compared with the data. Near the hemisphere-cylinder
Juncture, the measured pressures are higher than the calculated values,
corresponding to lower experimental Mach numbers found in the first
example .

In figure 5 the calculated impact-pressure distribution between the
body and the shock wave for x/d = 3.0 1s compared with Kubota's measure-
ments. Except for a layer near the surface where viscous effects are
important, the results of the present inviscid flow-field calculations
agree well with the measurements. The mass-flow rate between the body
and the shock wave was calculated for x/d = 5.0 and was found to be
1 percent less than the mass-flow rate in the free stream. These com-
parisons show that the present calculation method predicts not only the
surface-pressure distribution and shock-wave shape but also the variation
of properties between the body and the shock wave.

2The use of 50 starting points in some other examples led to a large
increase in computing time with no appreciable difference in the results.




Example 3: Hemisphere-Cylinder, Air, 7 = 1.4,
Mo = 3.00, %.03, 5.06, 6.03, and 8.10

The experimental results of Baer (ref. 12) are used to test the
present method over a range of Mach numbers .2 In figure 6 the calculated
shock-wave shapes for M, = 3.00 to 6.03 are compared with the measured
shapes. (The shock-wave shape was not measured for Me = §.10.) Com-
parisons between the calculated and measured pressure distributions for
Mo = 3.00 to M, = 8.10 are shown in figure 7 for the hemisphere and in
figure 8 for the cylindrical afterbody. The effect of free-stream Mach
number on the afterbody pressure distribution is of interest. For
M, = 3.00 the flow expands below free-stream pressure at the shoulder,
and the pressure on the cylinder asymptotically approaches the free-stream
value. For M, = 4.03 the flow does not overexpand at the shoulder, but
rather the pressure decreases to the free-stream value at x/d = 1.7 and
reaches a minimum value at x/d ~ 5. For M, = 5.06 and 6.03, the surface
pressure decays to the free-stream value further downstream and does not
reach a minimum within the model length of Z/d =6.25. For M =8.10
the surface pressure always remains higher than the free-stream value
within the model length. The pressures measured near the shoulder were
higher than the calculated value for all Mach numbers except 3.00.

Example 4: Hemisphere-Cylinder, Helium,

7 = 1.6667, Mp = 15 and 20

The flow of helium over hemisphere-cylinders is considered in this
example. The shock-wave shapes calculated for M, = 15 and 20 are shown
in figure 9. Comparisons with measurements made in the Ames Hypersonic
Helium Tunnel show good agreement not only in the nose region but far
downstream. The good agreement is not unexpected in view of the previous
comparisons for air. Hayes and Probstein point out in reference 9 that
the effect of a change in 7> on the flow field is opposite to that of
Mach number; a flow with 7 = 1.6667 and very large M, is roughly
equivalent to a flow with 7 = 1.4 and My ~ 3.

Example 5: Sphere - 15°55' Cone-Cylinder, Air,
7 = L1.h, Mgy = k95

The preceding examples have been confined to hemisphere-cylinders.
In this example, the present calculation method is applied to the blunted

3No comparisons are made with the data of reference 12 at My, = 1.99
because the flow in the supersonic region was not obtained. Although the
Fuller blunt-body solution could be found, the large extent of the sub-
sonic region made it difficult to find an appropriate input line for the
method of characteristics.




cone shown in figure 10. 1In order to obtain the flow field beyond the
sharp corner between the cone and cylinder, the flow field properties
were determined along a normal to the axis at the corner. A Prandtl-
Meyer expansion was then used to obtain new flow properties on the body
slightly downstream on the cylinder. These properties were then used as
input points to the method of characteristics to obtain the solution
dovnstream of the corner. The calculated surface-pressure distribution
is shown in figure 10 and shows good agreement with the neasurements of
McConnell (ref. 13).

Exemple 6: Blunt Ellipsoid-Cylinder, Air,
7 = 1.4, M, =5.12

To demonstrate the present method for a nose shape other than a
sphere, the flow field has been calculated for a cylinder with a blunt
ellipsoidal nose defined by the following eguation:

<; " §>2'5 + <é %)2 =1 (3)

Good agreement 1s shown in figure 11 between the predicted shock-wave
shape (Bg = 1.30, A = 0.40) and the measurements from a shadowgraph of
8 free-flight model.

Example 7: Flat Plate With Circular Cylindrical
Leading Edge, Alr, 7 = 1.4, Mo = 4.70

The preceding examples have been concerned with axisymmetric bodies.
The two-dimensional problem is more difficult because of the large extent
of the subsonic region. As a result, Fuller's solution becomes more
diff'icult to obtain. In addition, for a given body profile, the flow
does not expand as rapidly around the nose, and any small error in the
body input point may result in an imbedded shock wave.

A simple blunt two-dimensional body is a flat plate with a circular
¢ylindrical leading edge, which has been investigated experimentally in
some detall by Tendeland, Nielsen, and Fohrman as reported in refer-
ence 1%. The calculated shock-wave shape shown in figure 12 and the
surface -pressure distributions shown in Tigure 13 compare favorably with
the results of reference 14. Note that the calculations do not take into
consideration the boundary layer and, hence, predict surface pressures
that are lower than the measurements.



A pumber of static- and impact-pressure surveys were taken 1in the
tests of reference 14, but none of those reported extend out to the shock
wave. In figure 14, unpublished impact-pressure surveys for x/d = 26.2
and 50.0 and a leading-edge diameter of 1/8 inch are compared with the
calculated impact-pressure distributions. Near the wall, the measured
impact pressures are lower because of the strong viscous effects. How-
ever, for the outer 80 percent of the distance between the body and the
shock wave, the impact pressure is predicted by inviscid theory.% A
check on the mass-flow rate showed that continuity of mass between the
free stream and the shock layer at x/d = 50 was satisfied within 1 per-
cent. It is significant that even at this large distance from the leading
edge, the flow properties are not constant between the body and the shock
wave .

Example 8: Sphere - 18° Cone, Air, M, = 17.8

Since the present calculations are limited to a perfect gas, the
real gas case is treated approximately with the assumption of an effective
value of 7 behind the shock wave. In figure 15 the shock-wave shape
determined from az shadowgraph of a blunted cone fired in the Ames Super-
sonic Free-Flight Wind Tunnel is compared with shock-wave shapes calculated
for 7 = 1.24 ang 1.32. TFor the given test conditions, the value of 7 at
the stagnation point was determined to be 1.24 with the thermodynamic prop-
erties of air given in references 1D and 16. In the nose region, good
agreement is obtained between the measured and calculated shock shapes for
Yy = l.2h; but downstream, better agreement 1is obtained for 7y = 1.32.
The calculated drag coefficient, with base drag neglected, was 30 percent
lower than the measured value of 0.166. The higher measured drag was
partly due to model pitching.

SUMMARY OF RESULTS

The inviscid flow of a perfect gas at zero angle of attack over
blunt -nosed axisymmetric and two-dimensional bodies has been calculated
numerically on an IBM 7090 computer. The method of calculation consisted
of the Fuller blunt-body solution for the subsonic and transonic regions
and the method of characteristics for the supersonic region. The following
results were obtained:

1. For the flow of a perfect gas, the results of the present
calculation method agreed well with experimental shock-wave shapes,
surface-pressure distributions, and flow-field surveys.

iThe two disturbances in the outer portion of the shock layer for
x/d = 50 are shock waves emanating from the boundary-layer trip.
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2. For a case where real gas effects were significant, the
shock-wave shape was predicted well with a perfect gas solution calculated
with the value of 7 at the stagnation point.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., June 21, 1962
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Figure 17.- Shock-wave shape for flat plate with cylindrical leading edge;
7 = 1.4, My = 4.7,
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(b) x/a = 50.0

Figure 14.- Concluded.
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